Exercise 32

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow 2} x^{3}=8
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad 0<|x-2|<\delta \quad \text { then } \quad\left|x^{3}-8\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-2|$.

$$
\begin{gathered}
\left|x^{3}-8\right|<\varepsilon \\
\left|\left(x^{2}+2 x+4\right)(x-2)\right|<\varepsilon \\
\left|x^{2}+2 x+4\right||x-2|<\varepsilon
\end{gathered}
$$

On an interval centered at $x=2$, a positive constant C can be chosen so that $\left|x^{2}+2 x+4\right|<C$.

$$
\begin{aligned}
& C|x-2|<\varepsilon \\
& |x-2|<\frac{\varepsilon}{C}
\end{aligned}
$$

To determine C, suppose that x is within a distance a from 2 .

$$
\begin{gathered}
|x-2|<a \\
-a<x-2<a \\
-a+2<x<a+2 \\
\left|x^{2}+2 x+4\right|<(a+2)^{2}+2(a+2)+4=a^{2}+6 a+12
\end{gathered}
$$

The constant C is then $a^{2}+6 a+12$. Choose δ to be whichever is smaller between a and $\varepsilon /\left(a^{2}+6 a+12\right): \delta=\min \left\{a, \varepsilon /\left(a^{2}+6 a+12\right)\right\}$. Now, assuming that $|x-2|<\delta$,

$$
\begin{aligned}
\left|x^{3}-8\right| & =\left|\left(x^{2}+2 x+4\right)(x-2)\right| \\
& =\left|x^{2}+2 x+4\right||x-2| \\
& <\left(a^{2}+6 a+12\right)\left(\frac{\varepsilon}{a^{2}+6 a+12}\right)=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 2} x^{3}=8
$$

